
Geant4 Performance Studies
using the CMS simulation

Mark Fischler Jim Kowalkowski Marc Paterno

17 April 2007

MF,JBK,MP G4 Performance



Our plans
Use (primarily) the cmsRun program, configured by
“standard” CMS configurations, to test the robustness and
speed of Geant4
Identify places for improvement in the Geant4 code
Design and implement improvements
Feed those improvements back to the Geant4 team

We are making modifications to our local copy of the Geant4
code, and may also consider suggesting changes to the CMS
code.
We are still becoming familiar with the code.

MF,JBK,MP G4 Performance



First step
We profiled one program: the CMS simulation configured
for standard CMS physics validation.
We used the SimpleProfiler to collect data

SimpleProfiler was written by one of us (JBK)
It is a very low-impact sampling profiler
It provides full call path information, not provided by other
tools (e.g. gprof, when obtaining sampling information).
There are few tools to create graphical displays of the
recorded information
These tools are in a “primitive” state, and are still being
developed

Today we will show the results of our first round of
measuring, re-coding, and measuring again.

MF,JBK,MP G4 Performance



Partial call graph
ID function name time

124 G4CrossSectionDataStore::GetCrossSection 8.1%
324 G4HadronCrossSections::GetParticleCode 3.7%

MF,JBK,MP G4 Performance



Timing results, after change
Knowing where to look, inspection of the source code showed
us a place where an improvement in OO design should lead to
speed improvement. The results were good:

function name before after

G4CrossSectionDataStore::GetCrossSection 8.1% 4.2%
G4HadronCrossSections::GetParticleCode 3.7% 0.1%

The function we rewrote has nearly disappeared from the
profiling; all the functions it calls have entirely disappeared.
The result is about a 4% speed-up in the program
execution time.

MF,JBK,MP G4 Performance



Future plans (I)
Do more of the same

Look for places to gain a few percent by small code
changes
Solution is often to put behavior in the right class
Such changes clearly (from code inspection) do not change
the program output
How much (speed) gain can we expect from such changes?
Perhaps 15%

Investigate algorithmic improvements (e.g. improve particle
stepping algorithms)

Such changes are larger in scope
. . . and harder to verify
. . . but have larger potential gains

MF,JBK,MP G4 Performance



Future plans (II)
Look into long initialization time

This might mean changes in Geant4 code
. . . or changes in the CMS code that uses it

Look into issues of numerical stability (e.g. NaN production)
Existing instability limits our ability to study performance
May be in Geant4 code, may be in CMS code

We will also continually improve our measurement tools,
with the goal of making them generally available.

The preliminary versions are already in the CMS code base.
Older versions are in use at D0 and CDF.
We propose to make the tools we are developing available
to others.

MF,JBK,MP G4 Performance


